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You must know:
 ✔ the difference between an equation  

and an identity

 ✔ the binomial theorem.

You should be able to:
 ✔ calculate with and express numbers  

in scientific notation

 ✔ construct simple deductive proofs

 ✔ apply the binomial theorem.

1 . 1   N U M B E R  R E P R E S E N TAT I O N ,  P R O O F  A N D 
T H E  B I N O M I A L  T H E O R E M

1 NUMBER AND ALGEBRA

Number representation
For very small and very large numbers it is convenient to represent 
them in the form

 a×10k

where a is a real number, 1 ≤ a < 10, and k is an integer. This is called 
scientific notation and is achieved by “moving” the decimal point,  
for example, 132 000 = 1.32×105 and 0.000 000 456 = 4.56×10−7 

        Assessment tip

The following statement will 
appear on the first page of all IB 
Mathematics papers.

Unless otherwise stated in the 
question, all numerical answers 
should be given exactly or correct 
to three significant figures. 

Remember this when answering 
any question. Many students 
lose marks by not following 
this instruction. Remember that 
non-zero digits are significant, 
zeros between non-zeros are 
significant, but leading zeros are 
not significant.

        Assessment tip

After any final numerical answer, 
you should state the accuracy 
that the answer has been given to, 
as shown by “(3 sf)” in Example 
1.1.1. This is a check to yourself 
that you have followed the 
instructions in the question or at 
the start of the paper.

Note

Using scientific notation will alter the number of decimal places, but it will 
not affect the number of significant figures. This is why writing numbers in 
scientific notation provides a better indicator of the level of accuracy involved. 
The second example above confirms that leading zeros are not significant.

Note

If the question asks you to give your answer exactly, you may write,  

for example: 134, π, 2 , 13
7

 and so on. Do not give a rounded decimal  

as your answer if the question asks for an exact answer.
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Simple deductive proof
An equation is true for some values of the variables, and so uses an 
equals sign “=”.

An identity is true for all values of the variables, and so uses the 
symbol “≡”.

For example, 3x + 1 = 7 is an equation, whereas (x + 1)2 ≡ x2 + 2x + 1  
is an identity. 

An identity will have a right-hand side (RHS) and a left-hand side 
(LHS). To prove an identity, start with one side and use valid rules  
until that side has been transformed into the other side.

Note

Calculators can use, for example, 
E6 to represent 106, where the E 
indicates an exponent. Remember 
that your answers should be given 
with correct notation and not using 
calculator nomenclature.

Sometimes both sides will seem complicated. It is then permissible 
to work with the LHS and show that this equals expression P, for 
example, and then start again independently with the RHS and show 
that this also equals P. Since both sides equal P, both sides are equal. 
However, you cannot start with both sides at the same time with an 
equals sign between them.

Example 1.1.1

Earth’s moon can be modelled as a sphere with radius r = 1740 km. 

The formula for the volume of a sphere is given by V= 4
3
πr3. Use 

this formula to find the volume of the moon in km3, giving your 

answer in the form a×10k where a ∈ , 1 ≤ a < 10 and k ∈ , i.e., in 

scientific notation.

Solution

V= 4
3
π × 17403= 2.21×1010 km3(3 sf)

        Assessment tip

It is often better to start with the side 
that looks the most complicated and 
try to simplify it to obtain the other 
side. Do not worry if the expression 
becomes longer before it eventually 
simplifies.

Example 1.1.2

Prove that x4 − 1 ≡ (x − 1)(x3 + x2 + x + 1), x ∈ 

Solution

RHS  ≡ (x − 1)(x3 + x2 + x + 1)  
≡ x4 + x3 + x2 + x − x3 − x2 − x − 1  
≡ x4 − 1 ≡ LHS

        Assessment tip

The command terms used when 
a deductive proof is required are 
“prove” or “show that”.

Note

You cannot prove an identity just by verifying that it is true for some value(s) 
of the variables. In Example 1.1.2, stating that both sides equal 0 for x = 1 
does not prove that this identity is true for all x ∈ .

Note

You also cannot prove an identity by starting with the very statement you are 
trying to prove, working with it until you reach something that is true and then 
declaring the original to be true.

For example, the following statement is faulty logic as A ⇒ B does not mean 
that B ⇒ A:

“3 = 4 ⇒ 4 = 3 ⇒ by adding the equations together, 7 = 7 and that is true, so 
3 = 4 must be true as well.”
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binomial theorem

        Assessment tip

In examinations, with “prove” or 
“show that” questions where the 
answer is given, your work will be 
checked carefully to ensure that 
each step follows logically from 
the previous step. Lay out your 
work methodically and do not miss 
out any steps. Remember, you are 
trying to communicate with the 
examiner. You are not just trying 
to convince yourself that the 
statement is true.

Note

The binomial theorem is given by

(a + b)n = an +  nC1a
n−1b1 +  nC2a

n−2b2 + ... +  nCra
n−rbr + ... +  nCn−1a

1bn−1 + bn

or in summation notation (a + b)n = 
r=0

n

∑nCra
n−rbr, where the  nCr, the binomial 

coefficients (combinations or “choose” numbers), can be obtained from 

Pascal’s triangle, the calculator or the formula  nCr = n!
r!(n− r)!

f

        Assessment tip

The formula book will be available 
in all IB exams. Always work with 
it next to you. Get to know where 
each formula is within the book. 
Make sure that you have learned 
formulae that you will need that 
are not in the book.

        Assessment tip

When using the binomial theorem, identify what n, a and b are. For small 
values of n it is worth quickly writing down the start of Pascal’s triangle:

   1  1

  1  2  1

 1  3  3  1

1  4  6  4  1

For nCr, when you are looking at row n, remember that it starts with r = 0.  
Put the binomial coefficients spaced out on a line, then fill in the powers  
of a and b. It is worth putting brackets around the expressions that are  
a and b so that you realize that it is the whole bracket that is raised to  
the appropriate power.

Show that x2 + 6x + 13 ≡ x + 3( )2 + 4

The answer above could have achieved 1/3 marks.

The correct solution should have been:

RHS ≡ (x + 3)2 + 4 ≡ x2 + 6x + 9 + 4 ≡ x2 + 6x + 13 ≡ LHS

x2 +6x + 13 =(x + 3)2 + 4
x2 +6x + 9=(x + 3)2

x2 +6x + 9= x2 +6x + 9

0 = 0, so it is true

SAmplE StudENt ANSWEr

 ▼ The layout of the “proof” 
was incorrect. It started with 
the very statement that we were 
trying to prove and finished with 
0 = 0, which we already know. This 
working could be reconstructed 
into a proper proof as shown.

 ▲ The algebraic manipulation 
was useful and could have been 
part of a correct proof. 

The construction of Pascal’s triangle relies upon the fact that 
n+1Cr = nCr−1 + nCr

This formula can be proved using the formula for nCr that involves 
factorials, but a more informal proof follows.

Example 1.1.3

Expand (1 + 2x)4 using the binomial theorem.

Solution

(1 + 2x)4 = 14 + 4 × 13 × (2x) + 6 × 12 × (2x)2 + 4 × 11 × (2x)3 + (2x)4

 = 1 + 8x + 24x2 + 32x3 + 16x4

4
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        Assessment tip

For larger values of n, when 
evaluating nCr use your calculator 
on the paper that allows the use 
of technology, and the formula 
involving factorials on the paper 
where technology is not allowed.

        Assessment tip

With questions like Example 1.1.5, don’t waste time writing down all the terms. 
Look at the general term and then fit it to what is required. The constant term is 
the one that does not involve x at all, because the exponent of x is zero.

A set of r people is to be chosen from n + 1 people. This can be done  
in n+1Cr different ways. The collection of n + 1 people has one very 
special person called Colin. The sets of r people can be divided into 
two disjoint subsets: those that include Colin and those that do not.  
For sets that include Colin, we will have to choose Colin and will then 
have to choose r − 1 people from the rest, so this can be done in nCr−1 
different ways. For the sets that do not include Colin, all the r people 
will have to be chosen from the rest, so this can be done in nCr different 
ways. Therefore, equating the two different ways of counting gives 
n+1Cr = nCr−1 + nCr

Example 1.1.5

Find the constant term in the binomial expansion of x + 2
x3

⎛
⎝⎜

⎞
⎠⎟
8

Solution

The general term is 8Cr x
8− r 2

x3
⎛
⎝⎜

⎞
⎠⎟
r

 

The power of x is 8 − r − 3r = 8 − 4r 

Require this to be 0, so r = 2 and the term is 8C2 x
6 2

x3
⎛
⎝⎜

⎞
⎠⎟
2

= 112

Example 1.1.4

Find the first three terms in the binomial expansion of (1 − 4x)10  
in ascending powers of x.

Solution

(1 − 4x)10 = 1 + 10C1 (−4x) + 10C2 (−4x)2 ... = 1 − 40x + 720x2...

Expand (2 − 3x)3 using the binomial theorem.

The answer above could have achieved 2/4 marks.

The correct solution should have been:  
23 + 3 × 22 × (−3x) + 3 × 2 × (−3x)2 + 1 × (−3x)3 = 8 − 36x − 54x2 − 27x3

23 + 3 × 22 × −3x + 3 × 2 × −3x2 + 1 × −3x3

= 8 − 36x − 18x2 − 3x3

 ▲ The binomial theorem was 
used with the correct binomial 
coefficients and correct powers of 
a, ensuring that the first two terms 
were correct. 

SAmplE StudENt ANSWEr

 ▼ Brackets were not placed around 
the expression for b, which meant 
that powers of the −3 were ignored. 
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counting principles
The combination number nCr represents the number of ways of 
choosing r objects from n objects. The permutation number nPr 
represents the number of different ways of arranging r objects  
from n objects in order. These can both be found on a calculator.

You must know:
 ✔ the difference between combinations and 

permutations

 ✔ the formula for the extended binomial theorem

 ✔ what a counterexample is.

You should be able to:
 ✔ count the number of ways of arranging objects

 ✔ apply the extended binomial theorem

 ✔ decompose a rational function into partial 
fractions

 ✔ construct a formal proof by induction

 ✔ construct a proof by contradiction

 ✔ solve systems of linear equations.

1 . 4  A L G E B R A  ( H L )

        Assessment tip

Think of the C numbers as 
“choose” or “select” numbers, 
where the order does not matter.

Think of the P numbers as “put” 
or “arrange” numbers, where the 
order does matter.

The difference between combinations and permutations can be 
illustrated as follows. If a team of four relay race runners is to be 
chosen from a group of six athletes, then this is a combination and 
there would be 6C4 = 15 ways of selecting them.  

Link to Probability SL 4.5 

Example 1.4.1

Find the number of ways 
of selecting a committee of 
three females and two males 
from a set of seven females and 
six males.

Solution 

We need to choose 3 females 
from 7 and 2 males from 6.
7C3 × 6C2 = 525

formulae for combinations and permutations

     
nCr =

n!
r!(n − r)!   

nPr =
n!

(n − r)!

f

If one operation can be done in n ways and a second operation can be 
done in m ways then the total number of ways of doing both operations 
is n × m. Think of walking down a road that divides into n paths and 
then each of these paths divides into m paths. There would be n × m 
different routes that you could take.

Example 1.4.2

Find the number of ways of 
selecting three people to the 
positions of: chair-person, 
treasurer and deputy chair-
person, from a committee of  
five people.

Solution
5P3 = 60

The positions the persons 
would hold matters, so this is a 
permutation not a combination.

17
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Extension of the binomial theorem
The binomial theorem gives a finite expansion for (a + b)n, where n ∈ +. 
This can be extended to negative integers and fractions and an infinite 

expansion is obtained. We utilize (a + b)p = ap 1+ a
b

⎛
⎝⎜

⎞
⎠⎟
p

, where p ∈  and 
the following expansion.

Link to Binomial Theorem SL 1.9 
and Maclaurin Expansions AHL 5.19

Example 1.4.3

(a) Find the first three terms in the extended binomial expansion  

for (1+ x)
1
2 , in ascending powers of x. 

(b) Hence find a rational approximation for 3
2

Solution

(a) (1+ x)
1
2 = 1+ 1

2
x +

1
2
× − 1

2
2

x2 +
1
2
× − 1

2
× − 3

2
6

x3 +…= 1+ x
2
− x2

8
+ x3

16
−…

(b) Taking x = − 1
4

     3
4

⎛
⎝⎜

⎞
⎠⎟

1
2 = 3

2
! 1 − 1

8
− 1

128
− 1

1024
= 887

1024
 

Example 1.4.4

Show that (2+3x)−1 = 1
2
− 3x

4
+ 9x3

8
− 27x3

16
+ ...  

Solution

(2+3x)−1 = 2−1 1+ 3x
2

⎛
⎝⎜

⎞
⎠⎟
−1
= 1

2
1+ −1× 3x

2
+ −1× −2

2!
3x
2

⎛
⎝⎜

⎞
⎠⎟
2

+ −1× −2 × −3
3!

3x
2

⎛
⎝⎜

⎞
⎠⎟
3

+…
⎛
⎝⎜

⎞
⎠⎟

      
= 1

2
− 3x

4
+ 9x2

8
− 27x3

16
+…

A team of four children is to be chosen from six girls and five  
boys. Find the number of ways in which this can be done if the 
team must contain at least one boy and at least one girl.

This answer could have achieved 5/5 marks.

11C
4
 = 330 

But we cannot have all boys or all girls so

330 − 5C
4
 − 6C

4
 = 330 − 5 − 15 = 310

 ▲ Good counting method 
shown for dealing with “at least 
one”, looking at all possibilities and 
then taking away those that cannot 
happen.

SAmplE StudENt ANSWEr

Extended binomial theorem

(1+ x)p = 1+ px + p(p−1)
2! x2 + p(p−1)(p−2)

3! x3 + p(p−1)(p−2)(p−3)
4! x4 + ...

 
where p ∈ , provided that the RHS converges, so we need |  x | < 1.

This expansion is not given in the formula book and so should be remembered.

If it is to be decided who carries the baton 1st, 2nd, 3rd and 4th then 
this is a permutation and the number of different ways in which this 
could be done would be 6P4 = 360. The nPr numbers are always bigger 
than the nCr numbers by a factor of r!

18
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partial fractions 
Just as fractions can be decomposed into simpler fractions, e.g., 7

12
= 1

3
+ 1

4
,  

rational functions can be decomposed into simpler expressions.  
A simple deductive proof could be used to show that, for instance:

3x + 4
(x+ 1)(x + 2)

≡ 1
x + 1

+ 2
x + 2

Partial fractions is a method that allows a rational function to be 
decomposed into simpler expressions. This is often done to assist in 
some other process, e.g., differentiation or integration.

Link to Simple Deductive Proof 
SL 1.6

Link to Partial Fractions to 
rearrange the integrand AHL 5.15

Example 1.4.5

Express 5x + 16
x2 + 7x + 10

 in partial fractions.

Solution

x2 + 7x + 10 = (x + 2)(x + 5)  

Setting 
5x + 16

(x + 2)(x + 5)
≡ A
x + 2

+ B
x + 5  for constants A and B gives

5x + 16 ≡ A(x + 5)+ B(x + 2)

Method 1: Equating the coefficients of the linear functions on both 
sides gives 5 = A + B, 16 = 5A + 2B ⇒ A = 2, B = 3 

Method 2: Since the identity above is true for all values of x it will 
be true for any particular values of x.

Putting x = −5⇒ B = 3

Putting x = −2⇒ A = 2

Concluding 
5x + 16

x2 + 7x + 10
≡ 2
x + 2

+ 3
x + 5

Example 1.4.6

(a) Express 1
r2 + r

 in partial fractions.

(b) Hence find an expression, in terms of n, for the sum 
1

r2+ rr=1

n

∑ 1
r2 + r

Solution

(a) r2 + r = r(r + 1)   1
r(r + 1)

≡ A
r
+ B
r + 1

⇒ 1≡ A(r +1) + Br  

So A = 1,B = −1   
1

r2 + r
≡ 1

r
− 1
r+1

(b) 
1

r2+ rr=1

n

∑ 1
r2 + r

 = 
1

r2+ rr=1

n

∑ 1
r
− 1
r+1

= 1 − 1
2
+ 1

2
− 1

3
+ 1

3
− 1

4
+ ... + 1

n
− 1

n+1

 
= 1− 1

n+1
= n
n+1  

        Assessment tip

The syllabus states that in 
IB examples there will be a 
maximum of two linear terms in 
the denominator and the degree of 
the numerator will be less that the 
degree of the denominator.

Since in general you need as many 
constants as the degree of the 
denominator, in these examples 
you will need an  A and a B.

Note

Example 1.4.6 illustrates how 
partial fractions could be used to 
create a “telescoping” series.

Note

Method 1 is more rigorous and the equating of coefficients would show if the 
proposed representation were impossible. Method 2 is often quicker to use if 
you are sure that the rational function can be split in this way.

19
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proof by induction
Proof by induction is the most formal proof that you will be expected 
to do. There is a set way of laying out the proof to comply with the 
rigorous logic of the proof. Proof by induction is used to show that 
a statement P(n) is true for all n ∈ +. Essentially, we have an infinite 
number of statements that we have to prove.

Example 1.4.7

Prove by induction that 
1

r2+ rr=1

n

∑ 1
r2 + r

= n
n+ 1

, for all n ∈ +

Solution

Let P(n) be the statement 
1

r2+ rr=1

n

∑ 1
r2 + r

= n
n+ 1

LHS of P(1) is 
1

12 +1
= 1

2
   RHS of P(1) is 

1
1+1

= 1
2

So P(1) is true.

Assume P(k) is true so 
r=1

k

∑ 1
r2 + r

= k
k + 1

LHS of P(k + 1) is 
r=1

k+1

∑ 1
r2 + r

=
r=1

k

∑ 1

r2 + r
+ 1

(k + 1)2 + (k + 1)
= k
k + 1

+ 1
(k + 1)(k + 2)

= k(k + 2) + 1
(k + 1)(k + 2)

= k2 + 2k + 1
(k + 1)(k + 2)

= (k + 1)2

(k + 1)(k + 2)
= (k + 1)

(k + 1) + 1
  

which is the RHS of P(k + 1), as required.

P(1) is true and P(k) true implies P(k + 1) is true, hence by the 
principle of mathematical induction, P(n) is true for all n ∈ +

Example 1.4.8

Prove by induction that 17n − 1 is always exactly divisible by 8  
for all n ∈ +

Solution

Let P(n) be the statement “8 exactly divides 17n − 1”

171 − 1 = 16 = 8 × 2 so P(1) is true.

Assume P(k) is true, so 17k − 1 = 8s for s ∈ +

17k+1 − 1 = 17 × 17k − 1 = 17 (8s + 1) − 1 = 8 × 17s + 16 = 8 (17s + 2)

17s + 2 ∈ + so 8 exactly divides 17k+1 − 1, showing that P(k + 1)  
is true.

P(1) is true and P(k) true implies P(k + 1) is true, hence by the 
principle of mathematical induction, P(n) is true for all n ∈ +.

        Assessment tip

You must first show that P(1) 
is true no matter how trivial it 
appears to be.

The algebra of the induction step 
working out well should give you 
confidence that you are doing the 
process correctly. Remember that 
you cannot use the statement that 
you are trying to prove. However, 
you can keep an eye on it and 
work towards it. Do not worry if 
expressions become longer before 
eventually simplifying.

There will be a reasoning mark 
for the concluding comment 
(provided that enough marks  
have been gained elsewhere)  
so remember it and give it.

        Assessment tip

If the question states “prove by 
induction” then you must do it this 
way, even if there are other methods 
of proof. If it just says “prove” and 
you decide to use induction, state 
that you are doing so.

For induction to be used, variable n 
must be a natural number and the 
statement that you wish to prove 
must be fully known. You might be 
asked to do an investigation and 
then generalize your results into 
a conjecture which you are then 
asked to prove by induction. 

This is how you lay out an induction proof.

Identify the statement P(n) that you intend to prove, for all n ∈ +.

Prove that P(1) is true.

Assume P(k) is true and show that this implies that P(k + 1) is true.  
This is called the induction step.

Conclude with the following comment “P(1) is true and P(k) true implies  
P(k + 1) is true, hence by the principle of mathematical induction, P(n)  
is true for all n ∈ + ”

This standard final comment needs to be learned by heart.
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Prove by induction that i2 + i
i=1

n

∑ = 1
3
n(n+ 1)(n+ 2), for all n ∈ +

The answer above could have achieved 2/8 marks.

The proof should have been as follows:

Let P(n) be the statement i2 + i
i=1

n

∑ = 1
3
n(n+ 1)(n+ 2)

LHS of P(1) is 12 + 1= 2. RHS of P(1) is 1
3
× 1× 2 × 3 = 2

So P(1) is true.

Assume P(k) is true, so i2 + i
i=1

k

∑ = 1
3
k(k + 1)(k + 2)

LHS of P(k + 1) is 

i2 + i
i=1

k+1

∑ = (i2 + i)
i=1

k

∑ + (k + 1)2 + (k + 1) = 1
3
k(k + 1)(k + 2)+ (k + 1)(k + 2)

= 1
3
(k +1)(k + 2)(k + 3) = 1

3
(k +1)(k +1+1)(k +1+ 2) = RHS of P(k + 1)

P(1) is true and P(k) true implies P(k + 1) is true, hence by the 
principle of mathematical induction, P(n) is true for all n ∈ +.

For n = 1  12 + 1 = 1
3
× 1 × 2 × 3⇒ 2 = 2  ✓

Assume the result for k  i2 + i
i=1

k

∑ = 1
3
k(k + 1)(k + 2)

So i2 + i
i=1

k+1

∑ = 1
3
(k + 1)(k + 1 + 1)(k + 1 + 2)= 1

3
(k + 1)(k + 2)(k + 3) 

1)(k + 1 + 1)(k + 1 + 2)= 1
3
(k + 1)(k + 2)(k + 3)(k + 3)

So it is true.

 ▲ The student knew they should 
first look at the case n = 1 and then 
assume the result for n = k and 
attempt to prove it for n = k + 1.

SAmplE StudENt ANSWEr

 ▼ The logic of the case n = 1 is 
poor, starting with what is to be 
proved and putting “tick”. The 
induction step has not been done. 
You certainly cannot just substitute 
k + 1 for k, they are consecutive 
integers. The standard concluding 
sentence has not been given, and 
even if it had been, there were not 
enough marks elsewhere for it to 
have gained the reasoning mark.

        Assessment tip

When dealing with induction on 
series (like the question here), 
in the induction step always look 
to see if the expression contains 
common factors (especially if you 
can see that they should be in the 
expression that you are working 
towards), rather than multiplying 
everything out.

Link to the Binomial Theorem, as 
proof by induction can be used to 
prove this theorem utilising  
kCr−1 + kCr = k+1Cr

counterexamples

To prove that a statement is not always true, it is sufficient to give just 
one example when the statement is not true. Such an example is called a 
counterexample.

Example 1.4.9

Show that the statement “11 exactly divides n10 − 1, for all  
n ∈ +” is false.

Solution

When n = 11, 11
10 − 1
11

= 119 − 1
11

, which is not an integer.  

So n = 11 is a counterexample.

Note

It is possible to have a variation to the standard induction proof where the  
first step is prove the result for d ∈  rather than for n = 1. The induction  
step would be the same. This would prove the result  for all n ∈ +, n ≥ d.

Note

In fact, in Example 1.4.9,  n = 11 is 
the smallest counterexample that 
could be found.
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proof by contradiction

The layout of a proof by contradiction is as follows. You are given a statement to 
prove. You assume it to be false and proceed to make logical deductions based 
on that assumption. If you then obtain a result that you know to be impossible, 
you can conclude that the original statement must be true.

This is because the original statement must be either true or false. If assuming 
it to be false leads to a contradiction, you can conclude that it must be true.

Example 1.4.11

Prove by contradiction that 3  ∉ 

Solution

Suppose that 3  ∈ . Then 3  can be written in the form 
a
b

 
where a, b ∈ , b ≠ 0. Furthermore, it can be assumed that a and 
b are coprime; there is not a prime number that exactly divides 
both a and b (as they could have been cancelled out). Then 

3 = a
b
⇒ 3b2 = a2, which implies that 3 exactly divides a2, which 

also implies that 3 exactly divides a (since 3 is a prime). Let a = 3A, 
where A ∈ , then 3b2 = (3A)2 ⇒ b2 = 3A2. This implies that 3 exactly 
divides b2, which also implies that 3 exactly divides b (since 3 is a 
prime). This gives the required contradiction as we have shown 
that 3 exactly divides both a and b, but we assumed that a and b 
were coprime. Therefore, we conclude that 3 ∉ .

Example 1.4.12

Let a + b 3 = c + d 3, where a, b, c, d ∈   
Prove that b = d and hence that a = c

Solution

Using proof by contradiction, assume that b ≠ d.  

Then a − c = (d − b) 3 ⇒ 3 = a − c
d − b

But 
a − c
d − b  ∈ . This is a contradiction. Therefore, we can conclude 

that b = d. Which also gives a + b 3 = c + b 3 and hence a = c.

        Assessment tip

If the question asks for “Proof by 
contradiction”, then you must do 
it that way. If a question just asks 
for a proof and you decide to use 
proof by contradiction, then state 
that this is the method that you 
are using.

Solution of systems of linear equations
The equation ax + by = c represents a straight line in 2 dimensions and 
the equation ax + by + cz = d represents a plane in 3 dimensions. Solving 
a system of linear equations of this form simultaneously can be thought 
of geometrically as finding the points where these objects intersect. 
There could be no solutions, one unique solution or an infinite number 
of solutions.

Link to AHL 3.18

Example 1.4.10

Find a counterexample to the 
statement “n exactly divides  
(n − 1)! + 1 or n exactly divides 
(n − 1)!, for all n ∈ +.”

Solution

For n = 4, 3! + 1 = 7 and 3! = 6,  
neither of which is exactly 
divisible by 4. So n = 4 is a 
counterexample.

Note

In fact, n = 4 is the only possible 
counterexample in Example 1.4.10.
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The calculator will do the (reduced) row echelon form method for 
you, but it can also be done by hand on a paper where technology is 
not allowed. This is the same as solving the equations simultaneously, 
and it is useful to learn. A shorthand notation is used with the x, y, z, 
not being written and the equals signs being represented by a vertical 
line. A row (representing an equation) can be multiplied by a non-
zero constant and multiples of one row can be subtracted or added to 
another row.

Example 1.4.13

Solve these simultaneous equations:

3x + 4y = 10
2x + y = 5

⎧
⎨
⎩

Solution

Technology allowed:

Using the simultaneous equations solver: x = 2, y = 1 

Or, rearranging: y = −3
4
x + 10

4
, y = −2x + 5 and graphing to find the 

intersection.

(2, 1)

y

x

No technology allowed:

(2 × first equation) − (3 × second equation) ⇒ 5y = 5 ⇒ y = 1 ⇒ x = 2

        Assessment tip

In IB questions you will have a 
maximum of three equations in 
three unknowns.

Example 1.4.14

Solve these simultaneous equations:

x + 3y + z = 9
2x + y + 4z = 21
x + 5y − 3z = −5

⎧
⎨
⎪

⎩⎪

        Assessment tip

The method of solution will depend on whether it is a paper that allows the 
use of technology.

With a paper that allows the use of technology, the easiest method is to use 
the simultaneous equation solver but you could find the intersection of lines 
by drawing a graph if you were only working in two dimensions.

With a paper where technology is not allowed you would reduce the number 
of equations by eliminating a variable and then repeat this process.
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        Assessment tip

Putting the description of what has 
been done with the rows as shown 
in Example 1.4.14 is good practice 
and makes it easier to follow your 
method.

To obtain row echelon form you 
are attempting to make the start of 
your notation look as much like

1
0 1
0 0 1

  as possible.

To obtain reduced row echelon 
form you are attempting to make 
the start of your notation look as 
much like

1 0 0
0 1 0
0 0 1

  as possible. 

 

Example 1.4.15

(a) Find the value of λ for which the following system of equations 
is consistent (this means that there is at least one solution).

 

x + 3y + z = 9
2x + 7y + 4z = 21

4x + 13y + 6z = λ

⎧
⎨
⎪

⎩⎪  

(b) For the value of λ found in part (a), find the solutions to this 
system of equations.

Solution

(a)           
1 3 1

2 7 4

4 13 5

9
21
λ

 
1 3 1

row2 − 2 row1 0 1 2

row3− 4 row1 0 1 2

9

3

λ − 36

row 3− row 2

1 3 1
0 1 2
0 0 0

9

3

λ − 39
 Last line is 0x + 0y + 0z = λ − 39

So to be consistent λ = 39

(b) So z = z, y + 2z = 3 ⇒ y = 3 − 2z, 

 x + 3y + z = 9 ⇒ x = 9 −3 (3 − 2z) − z = 5z 

Solutions are of the form 
x
5
= y − 3

−2
= z

Link to AHL 3.14 and AHL 3.15, 
the solution given in  
Example 1.4.15 (b) is a straight 
line through the point (0, 3, 0) and 

parallel to the vector 

5
−2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Solution (no technology allowed)

Representing the equations by   
1 3 1

2 1 4

1 5 −3

9

21
−5

(Calculations go across the page, then down)

1 3 1

row2 − 2 row1 0 −5 2

row3− row1 0 2 −4

9

3

−14   

1 3 1
− 1

5 row2 0 1 − 2
5

0 2 −4

9

− 13
5

−14

1 3 1

0 1 − 2
5

row3− 2 row2 0 0 − 16
5

9

− 3
5

− 64
5   

1 3 1

0 1 − 2
5

− 5
16
row3 0 0 1

9
− 3

5

4

Either: converting back into equations z = 4 
y − 2

5 z = − 3
15 ⇒ y = − 3

5 +
8
5 = 1 x + 3y + z = 9 ⇒ x = 9 − 3 − 4 = 2

Or: continue reducing rows in matrix form

row1− 3 row2 1 0 11
5

0 1 − 2
5

0 0 1

54
5

− 3
5

4

row 1− 11
5 row3 1 0 0

row 2 + 2
5 row3 0 1 0

0 0 1

2

1

4

Reading off x = 2, y = 1, z = 4

Note

A way to ensure that a calculator 
cannot be used is to include a 
parameter as demonstrated in 
Example 1.4.15

24

1


